Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Retraction of articles

This article reports the retraction of 39 articles published in *Acta Crystallographica Section E* between 2004 and 2009.

After thorough investigation (see Harrison *et al.*, 2010), 39 additional articles are retracted as a result of problems with the data sets or incorrect atom assignments. Full details of all the articles are given in Table 1.

Table 1

Details of articles to be retracted, in order of publication.

		Retracted		
Title	Reference	by	DOI	Refcode
trans-Bis[1-[3-(cyclohexylamino)propyliminomethyl]-2-naphtholato]copper(II) dichloride dihydrate	Zhang (2004)	Journal	10.1107/\$1600536804028296	BIPDUA
Bis(4-bromo-2-formylphenolato- $\kappa^2 O, O'$)copper(II)	Sun & Gao (2005)	Author	10.1107/S160053680500187X	FEYSUY
Bis(salicylaldehydo)zinc(II)	Xiong & Liu (2005)	Journal	10.1107/\$1600536805010913	GAMDUU
Bis(4-bromo-2-formylphenolato- $\kappa^2 O, O'$)zinc(II)	Chen (2006)	Journal	10.1107/\$1600536805040432	SAZCUS
$Bis(2-formylphenolato-\kappa^2 O, O')nickel(II)$	Li & Chen (2006)	Journal	10.1107/S1600536806012931	IDAZAP
Bis(2-formylphenolato)cobalt(II)	Qiu (2006)	Journal	10.1107/S1600536806015704	GEJDUV
Bis(2-formylphenolato- $\kappa^2 O, O'$)manganese(II)	Wang & Fang (2006)	Journal	10.1107/S1600536806021039	IDOVED
$Tetraaqua(1,10-phenanthroline-\kappa^2 N, N') copper(II)$ naphthalene-1,5-disulfonate dihydrate	Liu et al. (2006)	Author	10.1107/\$1600536806030637	GENYOO
$Tetraaqua(1,10-phenanthroline-\kappa^2 N, N')$ nickel(II) naphthalene-1,5-disulfonate dihydrate	Liu & Fan (2006)	Author	10.1107/\$1600536806035410	KERBEP
{6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- trinitratolutetium(III)copper(II)	Sui et al. (2006)	Journal	10.1107/S160053680604565X	HESPEP
Bis(2-formylphenolato- $\kappa^2 O, O'$)iron(II)	Yang et al. (2007)	Author	10.1107/\$1600536807021721	PIFCAJ
2,6-Dimethoxybenzohydrazide	Qadeer et al. (2007a)	Journal	10.1107/\$1600536807022593	PIFHES
2-(2,4-Dichlorophenylsulfanyl)acetohydrazide	Qadeer et al. (2007b)	Journal	10.1107/S1600536807022891	YIFSOW
{6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- trinitratoeuropium(III)zinc(II)	Hu et al. (2007)	Author	10.1107/\$1600536807031121	WIHKEE
{µ-6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- trinitratocerium(III)zinc(II)	Sui, Zhang, Hu & Yin (2007)	Author	10.1107/\$1600536807032564	WIHREL
{μ-6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- trinitratopraseodymium(III)zinc(II)	Chen et al. (2007)	Author	10.1107/S1600536807032540	WIHRIP
<i>μ</i> -6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- trinitratopraseodvmium(III)nickel(II)	Sui, Li et al. (2007)	Author	10.1107/\$1600536807032618	UFACUA
{6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- Iκ ⁴ O ¹ ,O ['] ,O ⁶ ,O ⁶ :2κ ⁴ O ¹ ,N,N',O ¹ }(methanol-1κO)-μ-nitrato-1:2κ ² O:O'- dinitrato-1κ ⁴ O O'-cerium(III)zinc(II)	Sui, Fang, Hu & Lin (2007)	Author	10.1107/\$1600536807033314	UDUYIC
[6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- methanol-u-nitrato-dinitratosamarium(III)nickel(II)	Sui, Zhang, Hu & Jiang (2007)	Author	10.1107/\$1600536807037130	AFECEU
{6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- methanol-u-nitrato-dinitratopraseodymium(III)zinc(II)	Sui, Fang & Yuan (2007)	Author	10.1107/S1600536807037488	AFICEY
{6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- methanol-u-nitrato-dinitratolutetium(III)zinc(II)	Sui, Sui et al. (2007)	Author	10.1107/\$1600536807037737	AFEFOH
catena-Poly[[chloridonickel(II)]-di-μ-chlorido-[chloridonickel(II)]-μ-4,4'- methylenebis(3.5-dimethylpyrazole)-κ ² N ² :N ²	Huang & Chen (2007)	Author	10.1107/\$1600536807039384	VIJYOD
{2.2'-Io-Phenylenebis(nitrilomethylidyne)ldiphenolato}zinc(II)	Liu et al. (2007a)	Author	10.1107/\$1600536807040640	DIKYUS
trans-Bis(ethylenediamine- $\kappa^2 N.N'$)bis(nitrato- κO)zinc(II)	Liu, Zeng & Chen (2007)	Author	10.1107/S1600536807042390	XIKYEW
$[N,N'-(o-Phenylene)bis(picolinamido)-\kappa^4N,N',N'',N''' lcobalt(II)$	Liu & Zeng (2007a)	Author	10.1107/\$1600536807044571	XILFII
$[N,N'-(o-Phenylene)dipicolinamide-\kappa^4 NInickel(II)$	Liu & Zeng $(2007b)$	Author	10.1107/S1600536807048386	WINWEW
{2.2'-Io-Phenylenebis(nitrilomethylidyne)]diphenolato}manganese(II)	Liu et al. $(2007b)$	Author	10.1107/\$1600536807052993	VIOPIV
N-(2-Amino-3-nvridyl)urea monohydrate	Li et al. (2007)	Author	10 1107/\$1600536807047526	SIMFEA
N-(2-Fluorophenyl)carbamic acid monohydrate	Yang (2007)	Author	10.1107/\$1600536807052464	WINMOW
Aqua(dimethylglyoxime- $\kappa^2 N, N'$)(3,5-dinitro-2-oxidobenzoato- $\kappa^2 O^1, O^2$)- copper(II)	Liu & Wen (2007)	Author	10.1107/\$1600536807054244	HIQCAM
<pre>µ-Acetato-tri-µ-ferrocenecarboxylatobis[(N,N-dimethylformamide)- copper(II)]</pre>	Liu, Lin et al. (2007)	Journal	10.1107/S1600536807059041	HIQQEE

Table 1 (continued)

Title	Reference	Retracted by	DOI	Refcode
	Hu et al. (2008)	Author	10.1107/S160053680706151X	MIRPAF
Bis(4-chloro-2-formylphenolato)nickel(II)	Li et al. (2008)	Author	10.1107/S1600536807056309	RISTET
{µ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- µ-nitrato-dinitratoterbium(III)zinc(II)	Chen et al. (2008)	Author	10.1107/S1600536808006958	QIXHIP
Bis(2-ethoxy-6-formylphenolato- $\kappa^2 O^1, O^6$)nickel(II)	Han (2008)	Journal	10.1107/S160053680800809X	QIXLIT
{µ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- µ-nitrato-dinitratoholmium(III)zinc(II)	Xiao, Sui et al. (2008)	Author	10.1107/S1600536808013743	BIZTUA
{µ-6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- trinitratoholmium(III)nickel(II)	Xiao, Fu et al. (2008)	Author	10.1107/S1600536808013755	BIZVAI
Hydrogen-bonding patterns in the cocrystal terephthalic acid-4,4'-bipyridine (2/1)	Wang et al. (2009)	Journal	10.1107/S160053680903236X	DUCZEH
{6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- 1κ ⁴ O ¹ ,O ['] ,O ⁶ ,O ^{6'} :2κ ⁴ O ¹ ,N,N',O ^{1'}](ethanol-1κO)-μ-nitrato-1:2κ ² O:O'- dinitrato-1κ ⁴ O,O'-samarium(III)zinc(II)	Huang et al. (2009)	Journal	10.1107/S1600536809033558	YUCWAV

References

- Chen, Q. (2006). Acta Cryst. E62, m56-m57.
- Chen, J.-R., Sui, Y., Luo, Q.-Y. & Jiang, R.-Q. (2007). Acta Cryst. E63, m2091– m2092.
- Chen, J.-R., Sui, Y., Wen, J.-W. & Yin, L.-Y. (2008). Acta Cryst. E64, m562– m563.
- Han, Z.-Q. (2008). Acta Cryst. E64, m592.
- Harrison, W. T. A., Simpson, J. & Weil, M. (2010). Acta Cryst. E66, e1-e2.
- Hu, R.-H., Sui, Y., Chen, L. & He, C.-M. (2008). Acta Cryst. E64, m8-m9.
- Hu, R.-H., Sui, Y., Fang, X.-N. & Chen, H.-M. (2007). Acta Cryst. E63, m2039– m2040.
- Huang, C.-F. & Chen, H.-L. (2007). Acta Cryst. E63, m2356-m2357.
- Huang, Q., Sui, Y.-H. & Zhang, G.-X. (2009). Acta Cryst. E65, m1161-m1162.
- Li, Y.-G. & Chen, H.-J. (2006). Acta Cryst. E62, m1038-m1039.
- Li, N.-G., Tao, R.-M. & Fu, B.-F (2007). Acta Cryst. E63, 04228.
- Li, Z., Zhang, X. & Pu, X. (2008). Acta Cryst. E64, m215.
- Liu, J.-T. & Fan, S.-D. (2006). Acta Cryst. E62, m2507-m2508.
- Liu, J.-T., Fan, S.-D. & Li, D.-Q. (2006). Acta Cryst. E62, m2165-m2166.
- Liu, D., Lin, J., Xu, Y., Huang, C. & Li, X. (2007). Acta Cryst. E63, m3094.
- Liu, Y.-Q. & Wen, H.-R. (2007). Acta Cryst. E63, m2928.
- Liu, Y.-Q. & Zeng, X.-R. (2007a). Acta Cryst. E63, m2547.
- Liu, Y.-Q. & Zeng, X.-R. (2007b). Acta Cryst. E63, m2684.
- Liu, Y.-Q., Zeng, X.-R. & Chen, W.-T. (2007). Acta Cryst. E63, m2462.
- Liu, Y.-Q., Zeng, X.-R., Luo, Q.-Y. & Xu, Y.-P. (2007a). Acta Cryst. E63, m2396.
- Liu, Y.-Q., Zeng, X.-R., Luo, Q.-Y. & Xu, Y.-P. (2007b). Acta Cryst. E63, m2854.

- Qadeer, G., Rama, N. H. & Chen, W.-T. (2007*a*). *Acta Cryst.* E63, 02892. Qadeer, G., Rama, N. H. & Chen, W.-T. (2007*b*). *Acta Cryst.* E63, 02932.
- Qiu, X.-Y. (2006). Acta Cryst. E62, m1190–m1191.
- Sui, Y., Fang, X.-N., Hu, P. & Lin, J. (2007). Acta Cryst. E63, m2135–m2136.
- Sui, Y., Fang, X.-N. & Yuan, M.-W. (2007). Acta Cryst. E63, m2155–m2150.
- Sui, Y., Li, X.-F., Huang, G.-S. & Wang, G.-J. (2007). Acta Cryst. E63, m2093– m2094.
- Sui, Y., Sui, Y.-H., Luo, Q.-Y. & Wang, Y.-D. (2007). Acta Cryst. E63, m2277– m2278.
- Sui, Y., Xiao, Y.-A., Fang, X.-N., Zeng, X.-R. & Li, M.-H. (2006). Acta Cryst. E62, m3205–m3207.
- Sui, Y., Zhang, J.-H., Hu, R.-H. & Jiang, R.-Q. (2007). Acta Cryst. E63, m2256– m2257.
- Sui, Y., Zhang, J.-H., Hu, R.-H. & Yin, L.-Y. (2007). Acta Cryst. E63, m2089– m2090.
- Sun, Y.-X. & Gao, G.-Z. (2005). Acta Cryst. E61, m354-m355.
- Wang, Q. & Fang, Z.-N. (2006). Acta Cryst. E62, m1492-m1493.
- Wang, S., Yang, T., Li, Z. & Yu, X. (2009). Acta Cryst. E65, o2198.
- Xiao, Y.-A., Fu, X.-K., Sui, Y., Wu, Q. & Xiong, S.-H. (2008). Acta Cryst. E64, m806–m807.
- Xiao, Y.-A., Sui, Y., Yi, X.-G., Wu, J.-H. & Zhang, L.-P. (2008). Acta Cryst. E64, m804–m805.
- Xiong, Z.-Y. & Liu, L.-J. (2005). Acta Cryst. E61, m863-m864.
- Yang, X.-M. (2007). Acta Cryst. E63, 04453.
- Yang, Y.-M., Lu, P.-C., Zhu, T.-T. & Liu, C.-H. (2007). Acta Cryst. E63, m1613. Zhang, P. (2004). Acta Cryst. E60, m1808-m1810.

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2-formylphenolato- $\kappa^2 O_i O'$)iron(II)

Yu-Min Yang, Peng-Cheng Lu, Tao-Tao Zhu and Chang-Hong Liu*

Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, People's Republic of China, and, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: changhong_liu2223@yahoo.com.cn

Received 27 April 2007; accepted 2 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.035; wR factor = 0.100; data-to-parameter ratio = 12.1.

The title complex, $[Fe(C_7H_5O_2)_2]$, is a mononuclear iron(II) complex with a distorted square planar coordination geometry and has the central Fe²⁺ ion located on an inversion centre, with four O atoms from two 2-formylphenolate ligands.

Experimental

Crystal data

erystat aana	
$[Fe(C_7H_5O_2)_2]$	V = 602.9 (5) Å ³
$M_r = 298.07$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 8.801 (5) Å	$\mu = 1.26 \text{ mm}^{-1}$
b = 6.236 (3) Å	T = 298 (2) K
c = 11.408 (6) Å	$0.35 \times 0.30 \times 0.13 \text{ mm}$
$\beta = 105.642 \ (7)^{\circ}$	

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.668, \ T_{\max} = 0.854$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.035 \\ wR(F^2) &= 0.100 \end{split}$$
S = 1.021068 reflections

3023 measured reflections 1068 independent reflections 841 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

88 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELX597 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1996); software used to prepare material for publication: SHELXTL.

The work was supported by the Analytical Test Fund of Nanjing University awarded to Dr Chang-Hong Liu.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2082).

References

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin USA.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m1613 [doi:10.1107/S1600536807021721]

Bis(2-formylphenolato-κ²O,O')iron(II)

Y.-M. Yang, P.-C. Lu, T.-T. Zhu and C.-H. Liu

Experimental

Equimolar iron(II) acetate and salicylaldehyde were put into a Teflon vessel, and aqueous ethanol solution (H₂O: EtOH = 1: 1 v/v) was added. The vessel was then put in a stainless steel tank to make hydrothermal treatment. The tank was heated to 140°C for 48 h. After the autoclave was cooled to room temperature, red crystals were formed. They were filtered, washed with aqueous ethanol solution for three times, and dried in a vacuo using CaCl₂, yield 71%.

Refinement

C-bound H atoms were included in the riding model approximation with C-H = 0.93 - 0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. A view of the molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability label and H atoms are shown as small spheres of arbitrary radii. Unlabeled atoms are related to labeled atoms by the symmetry code (-x + 1, -y, -z + 2).

Bis(2-formylphenolato- $\kappa^2 O, O'$)iron(II)

Crystal data
$[Fe(C_7H_5O_2)_2]$
$M_r = 298.07$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 8.801 (5) Å
b = 6.236 (3) Å
c = 11.408 (6) Å
$\beta = 105.642 \ (7)^{\circ}$
$V = 602.9 (5) \text{ Å}^3$
Z = 2
Hall symbol: -P 2yn a = 8.801 (5) Å b = 6.236 (3) Å c = 11.408 (6) Å $\beta = 105.642 (7)^{\circ}$ $V = 602.9 (5) \text{ Å}^{3}$ Z = 2

 $F_{000} = 304$ $D_x = 1.642 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 658 reflections $\theta = 3.6-26.1^{\circ}$ $\mu = 1.26 \text{ mm}^{-1}$ T = 298 (2) K Prism, red $0.35 \times 0.30 \times 0.13 \text{ mm}$

Data collection

Bruker SMART CCD diffractometer

1068 independent reflections

Radiation source: fine-focus sealed tube841 reflections with $I > 2\sigma(I)$ Monochromator: graphite $R_{int} = 0.026$ T = 298(2) K $\theta_{max} = 25.0^{\circ}$ ϕ and ω scans $\theta_{min} = 2.6^{\circ}$ Absorption correction: multi-scan
(SADABS; Sheldrick, 1996) $h = -9 \rightarrow 10$ $T_{min} = 0.668, T_{max} = 0.854$ $k = -6 \rightarrow 7$ 3023 measured reflections $l = -13 \rightarrow 7$

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.035$

 $wR(F^2) = 0.100$

S = 1.02

1068 reflections

88 parameters

Primary atom site location: structure-invariant direct Emethods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d_'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Fe	0.5000	0.0000	1.0000	0.0375 (2)
01	0.3768 (2)	0.1172 (3)	0.8467 (2)	0.0613 (6)
O2	0.6619 (2)	0.2057 (3)	1.01596 (19)	0.0577 (6)
C1	0.4067 (4)	0.2879 (5)	0.7994 (3)	0.0566 (8)
H1A	0.3347	0.3292	0.7272	0.068*
C2	0.5378 (4)	0.4246 (5)	0.8436 (3)	0.0480 (7)
C3	0.6593 (3)	0.3772 (5)	0.9496 (3)	0.0478 (7)
C4	0.7849 (4)	0.5252 (5)	0.9844 (4)	0.0629 (10)
H4A	0.8673	0.4982	1.0533	0.075*
C5	0.7869 (4)	0.7082 (5)	0.9180 (4)	0.0694 (10)

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0643P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.009$ $\Delta \rho_{max} = 0.37$ e Å⁻³ $\Delta \rho_{min} = -0.29$ e Å⁻³ Extinction correction: none

supplementary materials

H5A C6 H6A C7 H7A	0.8708 0.6667 (4) 0.6696 0.5447 (4) 0.4639	0.8033 0.7555 (5) 0.8802 0.6140 (5) 0.6435	0.943 0.813 0.769 0.777 0.708	3 7 (4) 6 9 (3) 4	0.083* 0.0682 (10) 0.082* 0.0619 (9) 0.074*	
Atomic displacer	nent parameters (2	$Å^2$)				
	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Fe	0.0355 (3)	0.0346 (3)	0.0344 (4)	-0.0034 (2)	-0.0043 (2)	0.0028 (2)
01	0.0597 (13)	0.0552 (14)	0.0568 (14)	-0.0066 (11) -0.0052 (11)	0.0086 (12)
O2	0.0571 (13)	0.0556 (13)	0.0498 (13)	-0.0091 (10	-0.0039(10)	0.0068 (11)
C1	0.0536 (19)	0.0568 (19)	0.052 (2)	0.0065 (15)	0.0010 (15)	0.0093 (16)
C2	0.0500 (18)	0.0448 (14)	0.0499 (19)	0.0071 (14)	0.0146 (14)	0.0032 (15)
C3	0.0527 (19)	0.0456 (17)	0.0448 (17)	0.0001 (14)	0,0125 (14)	-0.0028 (15)
C4	0.065 (2)	0.063 (2)	0.056 (2)	-0.0143 (16	o) 0.0078 (17)	-0.0014 (17)
C5	0.075 (2)	0.061 (2)	0.078 (3)	-0.0172 (19	0.030 (2)	-0.005 (2)
C6	0.076 (2)	0.0538 (19)	0.082 (3)	0.0027 (18)	0.034 (2)	0.0130 (19)
C7	0.062 (2)	0.059 (2)	0.067 (2)	0.0129 (18)	0.0206 (17)	0.0132 (19)
Geometric param	neters (Å, °)			10		
Fe—O2 ⁱ		1.889 (2)	C2	C3	1.4	413 (4)
Fe—O2		1.889 (2)	C3-	C4	1.4	412 (4)
Fe—O1 ⁱ		1.936 (2)	C4—	C 5	1.1	373 (4)
Fe—O1		1.936 (2)	Ç4—	H4A	0.9	9300
O1—C1		1.253 (3)	C5—	C6	1.3	394 (5)
O2—C3		1.307 (3)	C5—	H5A	0.9	9300
C1—C2		1.413 (4)	C6—	C7	1.3	365 (5)
C1—H1A		0.9300	С6—	H6A	0.9	9300
C2—C7		1.409 (5)	C7—	H7A	0.9	9300
O2 ⁱ —Fe—O2		180.0	02—	C3—C2	12	3.9 (3)
O2 ⁱ —Fe—O1 ⁱ		93.15 (9)	C4—	С3—С2	11	7.3 (3)
O2—Fe—O1 ⁱ		86.85 (9)	C5—	C4—C3	12	0.9 (3)
O2 ⁱ —Fe—O1		86.85 (9)	C5—	C4—H4A	11	9.5
O2—Fe—O1		93.15 (9)	С3—	C4—H4A	11	9.5
O1 ⁱ —Fe—O1		180.000 (1)	C4—	C5—C6	12	1.8 (3)
C1—O1—Fe		125.3 (2)	C4—	C5—H5A	11	9.1
C3—O2—Fe		127.21 (19)	С6—	C5—H5A	11	9.1
O1—C1—C2		127.2 (3)	С7—	C6—C5	11	8.3 (3)
O1—C1—H1A		116.4	C7—	С6—Н6А	12	0.9
C2—C1—H1A		116.4	C5—	С6—Н6А	12	0.9
С7—С2—С3		120.0 (3)	C6—	C7—C2	12	1.8 (3)
C7—C2—C1		117.7 (3)	C6—	С7—Н7А	11	9.1
C3—C2—C1		122.4 (3)	C2—	С7—Н7А	11	9.1
O2—C3—C4		118.8 (3)				
O2 ⁱ —Fe—O1—C	1	172.5 (3)	C7—	C2—C3—O2	17	9.8 (3)

supplementary materials

O2—Fe—O1—C1	-7.5 (3)	C1—C2—C3—O2	-0.1 (5)
O1 ⁱ —Fe—O1—C1	33 (100)	C7—C2—C3—C4	-0.5 (5)
O2 ⁱ —Fe—O2—C3	0(100)	C1—C2—C3—C4	179.6 (3)
O1 ⁱ —Fe—O2—C3	-170.2 (2)	O2—C3—C4—C5	-179.7 (3)
O1—Fe—O2—C3	9.8 (2)	C2—C3—C4—C5	0.7 (5)
Fe—O1—C1—C2	3.0 (5)	C3—C4—C5—C6	-0.4 (5)
O1—C1—C2—C7	-177.5 (3)	C4—C5—C6—C7	0.0 (6)
O1—C1—C2—C3	2.5 (5)	C5—C6—C7—C2	0.2 (5)
Fe—O2—C3—C4	172.7 (2)	C3—C2—C7—C6	0.1 (5)
Fe—O2—C3—C2	-7.6 (4)	C1—C2—C7—C6	-180.0 (3)
Symmetry codes: (i) $-x+1$, $-y$, $-z+2$.			

